You are here

Mixing and biological production at eddy margins in the eastern Gulf of Alaska

TitleMixing and biological production at eddy margins in the eastern Gulf of Alaska
Publication TypeJournal Article
Year of Publication2011
AuthorsPeterson TD, Crawford DW, Harrison PJ
Journal TitleDeep Sea Research Part I: Oceanographic Research Papers
Volume58
ISSN09670637
Keywordsphytoplankton
Abstract

We performed a multi-day shipboard experiment to test whether combining water from within an anticyclonic mesoscale eddy in the eastern Gulf of Alaska with water from outside could result in enhanced phytoplankton growth and to determine how mixing might influence planktonic assemblages. Initially, the eddy had lower standing stocks of algal pigments (chlorophyll a [chl a] and accessory pigments), nutrients, phytoplankton, and particulate organic carbon/nitrogen compared to waters outside of the eddy. The eddy possessed a greater diversity and abundance of coastal diatoms while the outside waters had a greater proportion of oceanic species, including the endemic pennate diatom, Nitzschia cylindroformis. After one week of incubation, rates of primary production were significantly higher in the mixed water compared to both the eddy and outside treatments. Pigment concentrations (except chl c3, alloxanthin, and zeaxanthin) and the proportion of large diatoms (mainly Pseudo-nitzschia spp.) and heterotrophic dinoflagellates were greater in the mixed water than would be expected from the simple combination of inside and outside waters. Nutrient limitation (most likely by trace metals) appeared to be less severe in the mixed water. Chl a was enhanced in the mixed water, particularly when compared to the eddy water. The mixing of eddy and outside water masses stimulated primary production by ~20%, but more importantly, the mixing resulted in a distinct planktonic assemblage. The biomass enrichment was short-lived, indicating that the maintenance of elevated chl a would require further mixing events in a physical setting that also permits an accumulation of biomass. We note that submesoscale processes, including the intensification of ageostrophic circulation that elicits strong vertical mixing in the presence of strain, might explain observed patterns of high phytoplankton standing stocks at the inner edges of Haida eddies in the field.

DOI10.1016/j.dsr.2011.01.010